

Surface Congestion Management

Hamsa Balakrishnan
Massachusetts Institute of Technology

TAM Symposium 2013

Motivation

Surface Congestion Management

- Objective: Improve efficiency of airport surface operations
 - Decrease taxi times, decrease fuel burn, improve/maintain airport throughput
- Multiple interconnected, constrained resources: Gates, aprons, taxiways, runways, departure routes, etc.

Role of Departure Metering

- Departure metering just one element of required surface management toolset
- Departure metering regulates pushbacks during congested periods
 - Decreased "engines-on" time,
 fuel burn & emissions
- Principle can work at any congested airport, but implementation details will vary
 - e.g., ATC facility vs. airline ramp tower

[A. Nakahara, 2012]

Challenges and Opportunities

- Uncertainty
 - Weather, runway configuration, demand (pushback/arrival times), operational variability, human factors,...
 - Level of certainty varies depending on information source, type, and time frame
 - What is capacity?
- Level of effort vs. expected benefit
 - Aggregate queue-based control vs. RTA-based trajectory control
 - Information requirements
- Ease of adaptability to different airports and operating environments
- Availability of (diverse) operational data

Operating Environments: Runway Configuration

Operating Environments: Airline Mix

LGA Aircraft Operations by Airline

PHL Aircraft Operations by Airline

Operating Environments: Demand Variations

Airport Operational Efficiency Metrics

- Daily operational efficiency reports to BOS Tower (since Aug 2011)
 - Compare inter-departure separations with target values
 - "Demand level" (combination of departure queue length and number of taxiing departures) for each 15-min interval

Some other projects: Efficient & Equitable Arrival/Departure Scheduling

- Given a set of flights with estimated arrival times at the airport, the aircraft need to be sequenced into the landing (takeoff) order, and the landing (takeoff) times need to be determined
 - Need minimum (wt. class dependent) wake vortex separation (Safety)
 - Currently FCFS; resequencing could increase throughput (Efficiency)
 - "Fair" resequencing: Constrained Position Shifting (CPS) [Dear 1976]
- We show that scheduling under constrained position shifting can be solved in (pseudo-)polynomial time as shortest-path problems on variations of this network

Balakrishnan and Chandran, AIAA 2006, ATM R&D Seminar 2007, Operations Research 2010 Chandran and Balakrishnan, ACC 2007 Lee and Balakrishnan, ACC 2008, Proceedings of the IEEE 2008

Some Other Projects: Prediction of air traffic delays

80 70

60

50

30

20

10

- Predict departure delay on a link by considering:
 - Current delay state of the network
 - Interdependencies between network elements
 - Time-of-day and day-of-the-week
 - Delays at origin, destination, and on link
 - Delay state of the National Airspace System (NAS)
 - Type of delay day in the NAS
- Delay states obtained by k-means clustering of delays
 - NY, Chicago and Atlanta emerge as main delay centers

Centroids of NAS delay states. Color represents avg. link departure delay over 2hr time-window

Other Research

- Network modeling and congestion control of airport surface operations [Khadilkar and Balakrishnan, AIAA Journal of Guidance, Control and Dynamics 2013]
- Mechanisms for resource allocation and reallocation
 [Balakrishnan, Conference on Decision and Control 2007; Ramanujam PhD thesis 2011]
- Discrete-choice models of configuration selection processes [Ramanujam and Balakrishnan, American Control Conference 2010]
- Factors influencing pilot penetration of weather [Lin and Balakrishnan, *Transportation Research Record* 2014]
- Distributed feedback control of the National Airspace System [Le Ny and Balakrishnan, AIAA Journal of Guidance, Control and Dynamics 2011]
- Models of engine performance from flight recorder data [Khadilkar and Balakrishnan, Transportation Research Part D 2012]
- Integration of control and communication algorithms for NextGen [Park et al., IEEE Transactions on Intelligent Transportation Systems 2013]

